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Abstract 

Tuberculosis (TB) remains as a significant global health threat to date, with latent TB infection (LTBI) serving 
as a major reservoir for future active disease cases. A practical approach to an effective control and eradication 
of TB hence, requires an explicit identification of infected patient whom are at high risk of progressing from latent 
to active TB, particularly in those recently infected individuals. Current diagnostic tools however, including Tuber-
culin Skin Test and Interferon-Gamma Release Assays, are still lacking for their ability to critically distinguish 
between recent and remote infections, leading to insufficiency in optimizing targeted preventive treatment strate-
gies. This review examines the limitations of current diagnostic tools and explores novel biomarkers to enhance 
distinction within the infection timeline in LTBI diagnostics. Advancement in immune profiling, dormancy antigen, 
along with molecular and transcriptomic approaches holds great promise to develop a diagnostic tools with bet-
ter accuracy to differentiate recent from remote infections, thereby optimizing targeted interventions to improve TB 
control strategies. These underscores the need for further research into these emerging diagnostic tools to facilitate 
an effective public health strategies and contribute to the united efforts in End TB Strategy.
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Background
Tuberculosis (TB) is an airborne infectious disease 
caused by Mycobacterium tuberculosis (MTB). Despite 
substantial global efforts in combating TB, it remains as 
a major public health threat, placing it the world’s sec-
ond leading cause of death from a single infectious agent, 
killing 1.6 million people annually [1, 2]. One significant 

challenge in controlling TB is attributed to the bacte-
ria’s capability to decrease its metabolic activity upon 
infection, thereby persisting within the host in dormant 
state which is referred to as latent tuberculosis infection 
(LTBI) [3]. As defined by the World Health Organization 
(WHO), LTBI is characterized by a persistent immune 
response to MTB antigens which do not exhibit clinical 
symptoms of TB [4]. Globally, it is estimated that one-
fourth of the population are latently infected with MTB 
[5], with higher prevalence rates of 31% from Southeast 
Asia and 28% from Western Pacific region [6].

Although individuals with LTBI do not manifest dis-
ease symptoms, these individuals harbour live bacteria 
which are capable of reactivation to active TB disease 
under certain health conditions [7]. While it is commonly 
agreed that the general public infected with LTBI car-
ries a 5–10% lifetime risk of reactivation upon infection 
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[8–10], studies has revealed that the reactivation risk are 
highest within the first few years of initial infection com-
pared to established remote LTBI individuals [11, 12]. 
An estimation done by Houben and Dodd (2016) further 
projected an annual incidence of 16.5 per 100,000  TB 
reactivation cases from the latent pool in the year of 
2035, which exceed the End TB Strategy target by WHO 
at 10 per 100,000, assuming the LTBI activation rate per 
annum is 0.15% [5]. The risk of reactivation hence high-
lights LTBI as a critical reservoir for future active TB 
cases, posing great challenge for TB control and elimina-
tion efforts [13]. Given these findings, it is imperative to 
develop a highly dependable diagnostic method, which 
identify LTBI in those at higher risk of TB reactivation 
such as recently infected individuals to facilitate targeted 
treatment in global TB eradication plan [4].

To date, there is still no gold standard for LTBI diagno-
sis despite LTBI having been recognized almost a century 
ago [14]. The currently available, primary diagnostic tools 
for detecting LTBI are Tuberculin Skin Test (TST) and 
Interferon-Gamma Release Assays (IGRAs). However, 
neither tests are able to give a direct measurement of live 
MTB bacteria within the host in LTBI state. Instead, they 
merely provide an indirect assessment of host immune 
response against TB in which the results rely heavily 
on the host’s competent immune response in identify-
ing LTBI individuals [15, 16]. Consequently, persistent 
positive results of TST and IGRA could be detected 
throughout the life of a latently-infected individual, dem-
onstrating its inability to provide a temporal resolution 
for detecting recently infected individuals who are at 
higher risk of reactivation. In addition, results interpreta-
tion of the tests varies extensively based on factors such 
as history of BCG vaccination, immunosuppression and 
TB burden in a specific region leading to inconsistent and 
potentially unreliable diagnosis [17–20].

Collectively, these limitations pose significant challenge 
in clinical-decision making and public health interven-
tions for TB preventive treatment (TPT) and contact 
tracing measures in the End TB Strategies which focuses 
on determining and treating higher risk individuals such 
as young children, the immunosuppressed and recently 
infected individuals [21, 22]. While it is clear that TB 
transmission often occurs in the general community 
in high-incidence settings [23], identifying individu-
als who have recently been infected which are at higher 
risk of reactivation could be a prudent strategy for con-
trolling transmission. Fortunately, there are increasing 
research focused on identifying biomarkers and devel-
oping new technologies that can provide this critical 
information, such as advanced immunological assays 
and molecular techniques [24–29]. These innovative 
strategies hold promise in providing temporal resolution 

thereby enhancing predictive value in LTBI diagnostics, 
ultimately improving global TB control and elimination 
efforts.

This review address one of the most significant limita-
tion of LTBI diagnostics in their inability to distinguish 
recent and remotely infected individuals and the public 
health implications for current issue. We also discuss the 
potential biomarker to differentiate recent and remote 
LTBI in hope to enhance targeted treatment and TB pre-
vention strategies.

Current diagnostic test
Tuberculin is a term adopted by Robert Koch a few years 
after identifying MTB as the causative agent for TB, 
referring to the filtrate of tubercle bacilli grown in glyc-
erol broth [30]. Although Koch’s findings diverged from 
his initial intention in curing TB infection, they opened 
the door to a significant diagnostic breakthrough, ena-
bling differentiation between infected and healthy indi-
viduals. His formulation was later refined to what we now 
know as purified protein derivative (PPD), which is an 
autoclaved mixture of protein precipitated from myco-
bacterial culture filtrate used in TST [31, 32].

The mechanism of TST involves a delayed-type hyper-
sensitivity (DTH) reaction, which occurs in two distinct 
stages: the sensitization stage and the effector stage. Dur-
ing initial infection, MTB antigens are recognized by the 
immune system, generating sensitized T cells that spe-
cifically target MTB antigens. The subsequent effector 
stage occurs upon PPD challenge via intradermal injec-
tion, resulting in the infiltration of immune cells such as 
monocytes, T and B lymphocytes, initiated by Th1 cells 
under the skin [33, 34]. TST is performed by injecting 
0.1 mL of PPD into the inner surface of the forearm, cre-
ating a slight wheal under the skin. Test results are read 
48–72  h later by measuring the diameter of induration 
on the forearm [16, 35]. Interpretation of a positive TST 
result depends on established cut-off points, varying with 
TB burden, individual risk, and BCG vaccination history 
[36–39]. The reliance of TST on the in vivo immune reac-
tion highlights its limitations, leading to false negative 
results in immunodeficient individuals, haemodialysis 
patients, and those undergoing anti-TNFα treatment, as 
well as false positive results in individuals previously sen-
sitized to environmental mycobacteria or with a history 
of BCG vaccination [36, 40–42].

The introduction of interferon gamma release assay 
(IGRA) marks a new milestone in LTBI diagnostics. 
IGRA overcomes significant weaknesses in TST by 
greatly reducing false positivity in BCG-vaccinated 
individuals and minimizing cross-reactivity with the 
majority of environmental mycobacteria. The success 
of IGRA is tied to the identification of a specific region 
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of MTB DNA, Region of Difference 1 (RD1), absent in 
BCG strains and most environmental bacteria except M. 
kansasii, M. szulgai and M. marinum [43–45].

The two main types of IGRAs widely used are T-SPOT.
TB and QuantiFERON-TB Gold In-Tube Test (QFT-
GIT). Both tests measure the cell-mediated immune 
response, quantifying IFN-γ released from effector mem-
ory T-cells upon 16–20  h of stimulation in response to 
MTB specific antigens [46–48]. T-SPOT.TB utilizes early 
secretory antigen target-6 (ESAT-6) and culture filtrate 
protein 10 (CFP-10) from RD1 as stimulating antigens, 
known to activate CD4 + T-cells to stimulate IFN-γ pro-
duction [24, 49]. On the other hand, QuantiFERON-TB 
Gold In-Tube Test (QFT-GIT) includes the same antigens 
as T-SPOT.TB, with an additional antigen from RD11 
known as TB7.7 (Rv2654). Studies suggest TB7.7 is highly 
specific against MTB and can stimulate higher IFN-γ 
levels in TB patients compared to BCG-vaccinated indi-
viduals [50, 51]. Despite the differences, both tests show 
concordance in diagnosing TB, [52–54], with excellent 
specificity in populations who had received BCG vacci-
nation [55, 56].

Overall, the aforementioned tests have distinct advan-
tages and limitations. While TST is inexpensive and sim-
ple to perform, its requirement for two healthcare visits 
to complete the test may result in loss of follow-up [57, 
58]. On the other hand, although IGRA seem to provide 
better diagnostic value over TST in terms of sensitivity 
and specificity, their higher cost and need for specialized 
equipment can be a barrier in resource-limited settings 
[59]. Both methods however exhibit similar limitations as 
neither test are able to differentiate between active tuber-
culosis (ATB) and LTBI. Moreover, they lack diagnostic 
value in immune impaired individuals especially in HIV 
co-infected patient that have higher risk of reactivation. 
Additionally, these tests cannot reliably determine and 
distinguish recent and remotely infected individuals, 
which are attributable to their reliance on host’s immu-
nological memory, thus failing to provide a sufficiently 
accurate positive predictive value for this differentiation.

Differentiating remote and recent infection
Recently, there has been a growing trend to use the 
terms "recent" and "remote" to describe the timeline of 
TB infections, with "recent" referring to infections that 
occurred lately and "remote" referring to infections that 
happened years ago. However, these studies often lack 
specific timeline or a concrete definition for these terms, 
leading to diverse interpretations. Typically, the defining 
criteria are associated to the risk of disease progression. 
Research suggests that the first 2 years following primary 
infection carry a 15-fold higher risk for disease progres-
sion compared to more established infection (> 2  years) 

without known risk factors [60, 61]. Thus, many studies, 
including that from the Centre of Disease Control US, 
use the first two years to define a recent infection, while 
subsequent years are considered as a remote infection 
[12, 62, 63]. Nonetheless, within this definition it remains 
unclear for remote infection whether the infection per-
sists or if bacterial clearance occurs over time.

Typically, in serial TST testing, individuals with a 
remote infection typically show a positive result in the 
initial test due to previous exposure to MTB antigen, 
while recently infected individuals are identified by con-
version in the second TST, marked by an induration of at 
least 10 mm with an increase of at least 6 mm compared 
to the first test [42, 64]. For IGRA, recent infection could 
be inferred by a conversion from negative to positive 
result within a two-year period, regardless of the mag-
nitude of change in IGRA results [65]. However, these 
lenient criteria likely overestimate conversion rates com-
pared to those observed in reality. To more accurately 
differentiate between recent and remote infection using 
IGRA, a more stringent criteria was used in some stud-
ies [25, 66–68]. However, none of these criteria precisely 
establish the timeline of infection, as no gold-standard 
test for this purpose is currently available.

Differentiating between individuals with remote versus 
recent TB infections is critical and is typically addressed 
during screening and contact tracing programs. This 
distinction is particularly important because recently 
infected individuals are at a higher risk of progressing to 
active TB. Consequently, they are often considered for a 
TPT regimen, with decisions based on certain risk fac-
tors such as the intensity of exposure, the source of the 
disease, and the potential for adverse drug reactions [69]. 
WHO’s operational handbook on TPT recommend using 
both TST and IGRA to diagnose LTBI before initiating 
TPT [58, 70]. Apart from that, a serial testing was also 
recommended by WHO as a surveillance program for 
those who might have occupational exposure such as 
healthcare workers [71–74]. This approach may involve 
various methods, including serial testing with the IGRA 
[24, 67, 68] or TST [42, 64] within a time frame or com-
bined TST with IGRA which were tested sequentially 
[75]. Nonetheless, the best method for serial screening 
remained elusive and shall be further validated in coun-
tries with different TB burden.

Challenges in TB infection timeline diagnostics
To date, the precise T cell memory subset that provides 
immune protection against TB has not been determined. 
Nonetheless, the presence of a heterogeneous population 
of T memory cells is crucial in conferring a certain level 
of “immune protection” [76, 77], although most stud-
ies have suggested neither a previous TB infection nor 
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vaccination could provide protection against infection or 
re-infection [78–82]. Regardless of the theory, the exist-
ence of immunological memory presents a significant 
challenge in current diagnostic tests for LTBI. This com-
plexity arises because the immune response generated by 
these memory cells persist within the body long enough 
to potentially interfere with the subsequent result inter-
pretations, hence, complicating the diagnostic decision.

This concept holds true especially in TST, as small 
number of sensitized T-cells from the initial TB antigenic 
challenge may persist to become long-lived memory cells. 
Subsequent repeated challenges with PPD can result in 
a positive reaction for a long time, even after treatment 
[83, 84]. It is generally believed that the positive result of 
TST will persist for life [85]. Studies done around 1970s 
showed those who had previous positive TST for more 
than 1  year remained positive after one year or longer 
of isoniazid treatment [86, 87]. These findings suggest 
that reversion of TST results are unlikely, particularly 
for those with long term and established latent infection 
even after treatment. Thus, immune reactivity detected in 
such cases does not accurately reflect an ongoing infec-
tion at the specific time point especially during screening 
[88], leading to its inadequacy in determining recent and 
remote infections thereafter.

Despite its reliance on immunological memory, both 
TST and IGRA results are subject to fluctuations, lead-
ing to reversion and conversion phenomena that remain 
not fully understood, though it is more commonly seen 
in IGRA [89, 90]. This inconsistency hampers both tests’ 
ability to accurately distinguishing between previous 
infection that may have resolved and a recent infection. 
The heterogeneity of immune response among individu-
als to TB infection is the most plausible explanation for 
reversion without prophylactic treatment. These differ-
ences can be attributed to varying host’s pathogen clear-
ance capability in reducing bacterial load over the course 
of infection related to immune aging, comorbidities, 
chronic illness and etc. [90–93]. Additionally, misclassi-
fication often occur in IGRA when test results appear to 
be in a borderline zone, leading to inconsistent outcomes 
in serial testing in the absence of a parallel control group 
[94, 95].

IGRA reversion is commonly observed in individuals 
who initiate prophylactic treatment. Theoretically, IGRA 
results should decline with treatment due to the reduc-
tion of effector memory T-cells, which are more active 
during acute infection, while long-term memory T-cells 
(central memory T-cells) persist. Since recalling central 
memory T-cells require a longer incubation period, the 
overnight incubation of around 16–20  h is often insuf-
ficient to activate these cells, leading to negative IGRA 
results [96, 97]. Based on this understanding, IGRA 

results are being explored for their potential use in moni-
toring the effectiveness of TB treatment [98, 99]. How-
ever, numerous studies suggested that the IFN-γ levels 
remained persistently elevated months after treatment, 
deeming IGRA unsuitable for treatment monitoring and 
limit their potential use in determining a relapsed recent 
MTB infection [93, 100, 101].

Briefly stated, TST and IGRA are not a reliable tools 
to provide a temporal resolution. The persistent eleva-
tion of both TST and IGRA following treatment, along 
with frequent reversion and conversion, can complicate 
the interpretation of test outcomes even if serial testing 
is implemented. Consequently, a robust historical medi-
cal data tracking system is needed to assist in interpret-
ing TST and IGRA results over decades. However, these 
data are often unretrievable in low- and middle-income 
countries (LMICs) that experience high prevalence of TB 
[64, 102]. Even with proper tacking system in place, the 
lengthy timeline for retesting can lead to loss of follow-
up, making serial testing less practical in public settings 
compared to its use among healthcare workers. Addi-
tionally, the implementation of serial testing is hampered 
by various practical challenge especially in resource lim-
ited, high TB burden settings. As a result, there is a criti-
cal need for supplementary diagnostic methods that can 
accurately assess TB infection status with a single test.

Implications of the inability to distinguish 
between remote and recent infection
Public health implications
From a public health perspective, the inability to distin-
guish between recent and remote infection using TST 
and IGRA presents substantial challenges for control-
ling outbreaks and implementing targeted interventions. 
TB screening and contact tracing aim to quickly identify 
potential active TB cases in preventing further transmis-
sion, and detect contact clusters to provide TPT before 
they progress to an active disease [103, 104]. Given that 
each active TB case can transmit the disease to approxi-
mately 10–15 contacts within a year if left undetected 
[105, 106], prompt and targeted action is critical in man-
aging active cases and their contacts to control the spread 
of TB [107]. Additionally, recent infections can indicate 
ongoing transmission within a community [108], high-
lighting the urgent need for rapid intervention to break 
the transmission chains.

In high TB prevalence countries, differentiating 
between recent and remote infections using TST and 
IGRA is particularly challenging. A positive result in 
these tests often indicates the presence of immuno-
logical memory towards MTB antigens, but does not 
necessarily distinguish between recent and remote 
infections as discussed earlier. This limitation is critical 
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because recent infections are of particular concern for 
progression to active TB disease and subsequent trans-
mission within the community [12]. The challenge is 
compounded by the fact that individuals in high TB bur-
den settings frequently experience reinfection, even after 
successful treatment of a previous infection, unlike in 
low TB burden countries [79, 109]. Thus, a positive TST 
or IGRA result might reflect either a remote, previously 
treated infection or a recent reinfection, complicating 
the determination of an individual’s current infection 
status [25, 110].

The lack of temporal resolution in these tests creates 
public health dilemma, hindering the ability to imple-
ment immediate and effective intervention strategies 
[106]. This limitation affects both short-term response 
and long-term TB control efforts. Without the ability to 
distinguish recent from remote infections, transmission 
chains may go undetected, particularly among individu-
als with recent infections who may evade appropriate 
intervention due to the ambiguity of their infection sta-
tus. If these individuals eventually develop active TB, 
they can initiate new transmission chains, necessitating 
additional rounds of contact tracing and interventions. 
This cycle strains public health resources and compli-
cates efforts to manage and control TB outbreaks effec-
tively, as it requires diversion of resources from treating 
people with active TB as discussed above [111]. This 
challenge is further exacerbated by the COVID-19 pan-
demic, which has led to a tremendous increase in dis-
ease burden due to reactivation of latent infection in 
post-COVID infected patient, along with the diver-
sion of health resources towards combating COVID-19. 
These factors have severely impacted ongoing TB control 
efforts [112–114]. Therefore, the development of diag-
nostic tools with strong predictive value in determining 
infection progression would greatly enhance TB control 
efforts, particularly during this syndemic period.

Clinical implication
TB preventive therapy (TPT) consists of a course of 
one or more anti-tuberculosis medicines designed for 
LTBI patient to prevent the development of TB disease. 
This treatment regimen is a cornerstone of the End TB 
Strategy, aimed at safeguarding both individuals and the 
communities from TB. Regardless of the type of regi-
men used, TPT is recommended for individuals who are 
recently exposed to TB and are at higher risk of devel-
oping active TB following exposure [111]. The detailed 
criteria for initiating TPT are outlined in WHO consoli-
dated guidelines on TB preventive treatment [70]. These 
guidelines emphasized that individuals with recent con-
tacts are one of the key targets for TPT intervention, as 
those recently infected individuals are at a heightened 

risk of progression to active disease and LTBI constitutes 
the largest reservoir of TB.

Prior to initiating a TPT regimen, a TST or IGRA is 
typically recommended as part of the a “test-to-treat” 
approach in TB screening and contact tracing measures 
[115], hence, this provides a reference to clinicians to 
inform their decision about TPT initiation in an indi-
vidual. Positive TST and IGRA results strongly indicate 
the need for TPT, which can significantly reduce the risk 
of developing an active TB when used effectively [116]. 
A study in 2021 demonstrated that the risk of disease 
progression is threefold higher in TST converters, and 
schoolchildren who received TPT had a 79% lower risk of 
developing TB, with protection being particularly effec-
tive (93% risk reduction) in recent contacts [21]. How-
ever, TST and IGRA results present certain concerns 
because their positivity can persist for long durations and 
may potentially remain elevated for life. This persistent 
elevation may not necessarily indicate an active infection, 
and thus, do not accurately reflect the needs for TPT 
[116, 117]. Consequently, from a clinical perspective, 
these limitations can complicate decisions regarding TPT 
implementation, potentially leading to unnecessary treat-
ment that expose individuals with adverse drug reactions 
or missed opportunities to prevent the development of 
active TB [118, 119].

The limitation of current diagnostic test, specifically 
their inability to distinguish between recent and remote 
TB infections, are often overlooked when evaluating 
treatment decisions versus resource allocation. Treat-
ing LTBI requires a lengthy course of antibiotics which is 
costly and burdensome for both the patient and health-
care system. Although studies have shown that providing 
TPT is cost-effective compared to treating TB disease in 
the future [120], the cost of scaling up TPT with contact 
investigation to all TB contacts can be substantial. In 
countries such as Congo and Pakistan, it represents more 
than 50% of total TB care budget [121]. Additionally, an 
estimation done in 2023 shows that the cost for TB trac-
ing and TPT provision in high TB-burden countries 
amounts to 6.7 billion USD, far exceeding the total TB 
care funding of all countries combined, which is 5.4 bil-
lion USD [122]. This estimate however, does not include 
the costs associated with the mis-prescription of TPT 
due to inaccurate TST and IGRA result interpretation. If 
these cost were included, the total cost would far exceed 
the 6.7 billion USD estimate.

Apart from cost, the drug supply chain and availability 
further complicate resource allocation for TPT. When 
TPT is not precisely supplied to high-risk LTBI patients, 
it not only leads to ineffective TPT allocation but also 
results in significant resource wastage [123]. The chal-
lenge in drug supply and availability is universal and 
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particularly significant in resource-limited settings [124, 
125]. Drug shortage is a common reason for discontinu-
ing Isoniazid Preventive Therapy (IPT) in children, as 
observed in a community-based LTBI treatment study 
in Ethiopia. Isoniazid stockouts were also identified as 
the primary cause for low TPT uptake [126, 127]. These 
issues underscore the need for resource optimization in 
TPT delivery, which can be significantly improved with 
accurate diagnostic tools capable of identifying high-
risk individuals, such as those who have been recently 
infected.

Promising strategies in overcoming the limitations
Host immune profiling
Immune profiling plays a pivotal role in advancing our 
understanding of host immune response dynamics over 
time, particularly in the context of TB and LTBI diagnosis 
[128, 129]. Current LTBI diagnostics are based on immu-
nological principles, emphasizing the importance of 
immunological research in TB, though these tools are not 
yet optimal. Therefore, continued research into immune 
profiling remains crucial despite the limitations of cur-
rent methods. By analysing the complex interactions 
between MTB and the host immune system, immune 
profiling can provide a detailed perspective on disease 
progression and treatment responses. This approach 
involves a comprehensive assessment of immune cells, 
cytokines, chemokines, and cell surface markers, offer-
ing insights into how these components vary at different 
stages of TB infection [130, 131]. Such detailed immune 
profiles have the potential to identify novel biomark-
ers for more accurate LTBI diagnosis, overcoming cur-
rent limitations and facilitating earlier intervention and 
improved clinical outcomes.

Given the limitations of existing diagnostics in distin-
guishing recent from remote infections, researchers have 
tried to refine these methods. For example, a 2010 study 
by Krummel et al. improvised the ELISpot assay by meas-
uring IL-2 production in T cells stimulated with ESAT-6 
and CFP-10. This approach is based on the principle that 
CD4 + CD45RA- CCR7- effector memory cells rapidly 
produce IFN-γ in response to these antigens, while cen-
tral memory T cells, which may persist post-treatment, 
predominantly produce IL-2 upon re-stimulation. [132]. 
Simultaneous measurement of IL-2 and IFN-γ could 
potentially identify individuals who were treated and 
then recently reinfected with TB, enabling rapid inter-
vention [133]. Another study in 2020 identified that high 
proliferative CD4 + T-cell responses to CFP-10 and PPD, 
coupled with low responses to ESAT-6, are specific indi-
cators of recent latent infection when measured early 
after exposure [134].

MTB is an intracellular pathogen primarily triggers a 
cellular-mediated immune response, with CD4 + T cells 
playing a crucial role in controlling MTB in the early 
phase of infection [135, 136]. This theory proved evi-
dent showing the loss of CD4 + T cells can result in pro-
gressive TB disease, reactivation of LTBI and enhanced 
susceptibility to reinfection [137–139]. Thus, extensive 
ongoing research focused on the mechanisms of CD4 + T 
cells such as cytokine co-expression profiles, T cell differ-
entiation and T cell activation for their involvement in its 
dynamic immune response for controlling TB infection 
and their diagnostic applicability [140–142]. Recent stud-
ies highlights the value of CD4 + T cell activation mark-
ers, such as HLA-DR expression and ∆HLA-DR median 
fluorescent intensity (MFI), as promising biomarkers for 
distinguishing recent from remote MTB infections dem-
onstrating high specificity and sensitivity [24, 25]. A mul-
tidimensional analysis incorporating machine learning 
has further confirmed by identifying HLA-DR expres-
sion on ESAT6 and CFP10 specific Th1 cells as a robust 
biomarker for this differentiation [26]. Additionally, 
CD4 + TEFF cells producing TNF-α, but not IFN-γ or 
IL-2, have been identified as a potential biomarker, with 
the ability to distinguish recent from remote infections 
with 100% sensitivity and 95% specificity [143].

Although CD4 + T cells were initially considered the 
primary mediators of immune defence against MTB 
infection, recent studies have demonstrated the sig-
nificant protective role of CD8 + T cells. Depletion of 
CD8 + T cells in chronic infection has been shown to 
increase bacterial burden in murine models [144], high-
lighting their importance. Subsequent findings have 
further supported their role in conferring protection 
by producing IL-2, IFN-γ and TNF-α, which are crucial 
for controlling MTB infection [136, 145]. Given these 
insights, researchers have increasingly focused on the 
diagnostic potential of CD8 + T cells.

The recent FDA-approved QuantiFERON-TB Gold 
Plus (QFT-Plus) assay, which includes an additional tube 
to quantify IFN-γ production by CD8 + T cells upon anti-
gen stimulation, claims to detect recent MTB exposure 
based on the premise that acute antigen load in early 
infection leads to an increase in CD8 + T cells [146, 147]. 
However, the test results vary; while some studies suggest 
its potential to differentiate between recent and remote 
infections [148–150], others find it inadequate to reli-
ably distinguish infection stages [151, 152]. Despite this 
debate, the potential of CD8 + T cells remains promis-
ing. A study in 2013 demonstrated that combining flow 
cytometry and QFT testing might improve classifica-
tion between the infection states, showing that CD8 + /
CD69 + /IFNγ + T cells are significantly higher in recent 
infected individuals when stimulated with QFT antigens 
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compared to those with remote or active TB [149]. Build-
ing on this, the applicability of tetramer technology 
could also be explored to detect MTB-specific CD8 + T 
cells in distinguishing recent and remote infections as 
this method is highly specific and are able to detect anti-
gen-specific T cells even with limited capacity to mount 
cytokine response, shedding light for a more accurate 
diagnosis in HIV/TB co-infected patient [153].

In short, the integration of multiple detection methods 
such as flow cytometry, QFT testing and tetramer-based 
assay for immune profiling on CD4 + and CD8 + T cells 
could potentially capture a more defined dynamics of 
immune response in early infection, ultimately enhancing 
infection stage detection and aiding in TB management.

Dormancy antigens
The diagnosis of LTBI has always been hinging on detect-
ing immune responses to specific mycobacterial antigens, 
making the selection of these antigens critical for both 
identifying LTBI and developing assays that can differ-
entiate between infection stages. A significant body of 
research has been dedicated to discovering mycobac-
terial antigens that are naturally expressed during the 
latent phase of TB infection with TB dormancy/latency 
antigens being one of the promising antigens of study. 
As mentioned earlier, initial TB infection are usually fol-
lowed by a dormant or non-replicating state of this bac-
teria within the host known as LTBI. This capability is 
highly important in MTB to survive in the host for long 
duration and to evade the immune system [154, 155]. 
Studies have identified over 100 antigens associated with 
LTBI, categorized into six main groups: dormancy sur-
vival regulon antigens, reactivation antigens, nutrition 
starvation-associated antigens, resuscitation-promoting 
factor antigens, toxin-antitoxin system associated anti-
gens and others [154, 156–158]. Among these, dormancy 
survival regulon antigen that are regulated by DosR regu-
lon have gain particular attention as potential biomarker 
for LTBI diagnosis due to their role in facilitating the bac-
teria’s transition into a dormant state [155, 159–161].

Recent studies suggest that using antigens from the 
DosR regulon as stimulating agents can reliably differ-
entiate between active TB and LTBI individuals [160, 
162, 163]. Building on these promising results, research-
ers have begun to explore their potential in distinguish-
ing recent from remote infections. One example is the 
Rv2626c latency antigen, which has shown potential in 
differentiating recent and remote infections by analysing 
IFN-γ production following Rv2626c stimulation [27]. 
Additionally, Rv2628 has been found to induce a higher 
IFN-γ response in T-cells from individuals with remote 
infections or those cured of TB, compared to those with 
recent infections, regardless of the incubation period 

[28]. Although studies on the use of latency antigens to 
differentiate recent from remote infections are still lim-
ited and require further validation, the promising find-
ings suggest that incorporating these antigens into 
contact screening could enhance clinical decision-mak-
ing in the provision of TPT.

Molecular methods
Gene expression signatures have garnered significant 
attention in recent years due to advances in molecular 
techniques in infectious disease research, particularly for 
monitoring disease activity through blood transcriptomic 
studies [164]. Evidence suggests that the transcriptomic 
profiles of specific immune-related genes are altered in 
response to MTB infection and disease, with distinct pat-
terns of up- and down-regulation documented in various 
reviews [165, 166]. Current research in blood transcrip-
tomics largely falls into four major categories: diagnosing 
LTBI [167–169], triage testing for active TB [170, 171], 
monitoring treatment response [172–175], and predict-
ing risk of progression to active TB [29, 166, 176]. These 
studies underscore the clinical potential of differential 
transcriptomic expression in providing valuable insights 
for TB management.

However, there is a relative paucity of research focused 
on identifying molecular biomarkers to distinguish 
between recent and remote TB infections. Some stud-
ies, though limited, have shown promise in this area. For 
instance, a 2022 study identified differentially expressed 
genes (DEGs) related to cytokine signalling, signal trans-
duction, neutrophil degranulation and other genes among 
newly infected prisoners, compared to non-infected 
prisoners and those with active TB [177]. Although this 
study did not directly compare DEGs between recent and 
remote infections, the identified DEGs may hold poten-
tial for further investigation. Additionally, a 2020 study 
identified 186 gene signatures that were differentially 
expressed in recent TB-exposed household contact com-
pared to those without recent exposure, highlighting the 
potential value of transcriptomics in contact tracing and 
differentiating between recent and repeated TB expo-
sures, especially in high-burden settings where IGRA 
and TST positivity are high [178]. Another study in 2020 
explored whole blood transcriptomic responses in mice, 
macaques, and human with recent and remote infections. 
It demonstrated promising findings in both mice and 
macaques, and identified six gene signatures in human 
capable of providing temporal resolution for the timing 
of TB infection [178].

As a summary, the promising findings suggest that 
blood transcriptomic analysis has the potential to offer 
temporal resolution, demonstrating significant utility 
for contact tracing and TB management especially in 
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countries with high TB burden. However, further vali-
dation with larger cohorts is necessary to confirm its 
clinical applicability (Fig. 1).

Conclusions
TB remains a significant global health threat, and accu-
rately distinguishing between recent and remote infec-
tions is critical for timely disease management. This 

distinction is crucial to ascertain appropriate preventive 
treatment and to guide accurate public health interven-
tions. Despite decades of efforts and progress in LTBI 
diagnostics, identifying the precise timing of infection 
remains challenging, as many patients cannot recall their 
exposure to MTB. The lack of a standardized definition 
for recent and remote infections across studies further 
complicates the search for effective biomarkers. This 

Fig. 1  Overview of current diagnostic tools for LTBI, highlighting existing challenges and future advancements for differentiating recent 
versus remote infections. Created in BioRender. Ding, Y. (2024) https://​BioRe​nder.​com/​h84i0​55

https://BioRender.com/h84i055
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uncertainty impedes efforts to monitor disease progres-
sion and transmission, thus affecting timely TB control 
measures.

The pursuit for reliable biomarker through immune 
profiling has potential but is fraught with challenges as 
these biomarkers indirectly detects MTB through an 
individual immune response, hence are greatly influ-
enced by individual variability against MTB. Similarly, 
dormancy antigens, which are used as stimulating anti-
gens, rely heavily on indirect immune responses rather 
than direct pathogen detection [179]. The development of 
novel diagnostic biomarkers, particularly those utilizing 
transcriptomics technology, also encounter significant 
barriers. These tests, while promising, require extensive 
validation across diverse populations and are hindered by 
high cost and logistical challenges, including the need for 
sophisticated equipment and skilled technician. Hence, 
these tools might not be able to meet operational and 
pricing targets when translated into clinical use products 
with high cost and low point of care utility especially in 
contact screening and triage process [180]. Such require-
ments make these tests particularly challenging to imple-
ment in low- and middle- income countries where TB is 
most prevalent.

Addressing these challenges requires establish-
ing well-defined standards for the terms "recent" and 
"remote" infections and standardizing cutoff points 
across countries with varying TB burdens. Such stand-
ardization will allow for more consistent interpretation 
of results across studies, reducing variations in cutoff 
points and enhancing the accuracy of biomarker utility 
assessments [180]. A multidisciplinary approach that 
integrates immunology, genomics, epidemiology, bioin-
formatics and machine learning is essential for advanc-
ing LTBI diagnostics [154]. Collaboration with public 
health experts is crucial to ensure that new diagnostic 
tools are both scientifically rigorous and practical for 
real-world application. Additionally, more longitudi-
nal studies involving high-risk populations are vital for 
identifying reliable biomarkers and refining TB risk 
prediction. Through these concerted efforts, the global 
health community can achieve significant advance-
ments in TB diagnostics and control.

In this review, we have summarized the significance of 
distinguishing between recent and remote TB infections 
in the context of TB control and elimination strategies. 
Current studies mainly focused on immune profiling, 
with the HLA-DR cell surface marker emerging as a 
promising biomarker for differentiating between recent 
and remote infections. Additionally, cellular responses 
to dormancy antigens and transcriptomic studies on 
cellular responses during infection have been explored 

for their potential to distinguish between recent and 
remote latent TB infections, with promising results. 
Continued research and refinement of these approaches 
are crucial for advancing TB diagnostics and improving 
disease management.
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